
Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

7912 http://www.webology.org

Analysis Of Novel Serverless Computing

Technique For Auto-Scaling And Cost Prediction

-Pooja Kumari Jha 1 , Dr Deepika Pathak2

1Research Scholar Department of Computer Science, University Teaching Department,

Dr. A. P. J. Abdul Kalam University, Indore, MP, India

2Research Guide Department of of Computer Science, University Teaching Department,

Dr. A. P. J. Abdul Kalam University, Indore, MP, India

ABSTRACT

Serverless computing is an evolutionary innovation that enables the designer to assemble

and run code without worrying about servers. The auto-purpose scaler's is to automatically

change the number of resources used by elastic applications in response to changes in

demand. This auto-scaler might be a one-off solution tailored to a specific application's

needs, or it could be a standard service provided by the IaaS vendor. It is expected that the

system would be able to strike a balance between the application's service level agreement

(SLA) and the cost of renting cloud resources. The present paper is focused on the current

Serverless Functions are monitored while in the continuous model learning process. When

miniaturized scale benchmarks are used, other functions, which have not yet been

developed, can be monitored.

Keywords: auto-scaling, cloud computing, Service Level Agreements (SLAs)

INTRODUCTION

With more and more business programmes being broken down into smaller, more

manageable pieces, serverless computing (also known as "serverless") is emerging as a

viable alternative to traditional cloud-based application delivery models. To help answer

the proposed research questions, we looked at two business serverless suppliers: AWS

(Amazon Web Services) [1, 2] Lambda and Microsoft Azure Functions. This is yet another

good reason to use Google Cloud Functions for cost assessment. As for identifying the

different serverless platforms, various characteristics must be examined. When deciding

on a platform, engineers should keep these characteristics in mind.

Cost: Clients often pay only for the time and resources actually used by serverless

capabilities, since their usage is metered. The ability to expand to zero-case sizes is a major

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

7913 http://www.webology.org

selling point for serverless platforms. Metered resources, such as memory or processing

power, and estimation methodologies, including off-top restrictions, vary amongst service

providers.

Performance and limits: Limits are placed on the maximum amount of memory and CPU

resources that can be made available to a capacity summon, as well as the maximum

number of concurrent requests that may be made to a serverless application [3]. Some

constraints, such as the simultaneous solicitation edge, may be raised as clients' needs

evolve, while others are inherent to the platforms themselves, such as the maximum

memory capacity.

Programming languages: To name a few, serverless services support "JavaScript, Java,

Python, Go, C#, and Swift. It's not uncommon for many programming languages to be

supported by various systems. Some of the platforms also provide language-agnostic

extension features for code that is packaged in a Docker image and supports a generally

defined application programming interface (API).

Programming model: Current serverless systems typically carry out a single principle

task that receives a word reference (such as a JSON object) as input and returns a word

reference (or similar) as output [4, 5].

Compensability: While most platforms provide some method for generating a serverless

capability from another, others provide higher-level tools for generating such capabilities,

which may make it easier to create more complicated serverless applications.

Deployment: Platforms make an effort to simplify deployment as much as possible.

Typically, designers' only obligation is to provide a document containing the capacity's

source code [6]. Beyond that, there are several alternatives, such as bundling code as a

document containing multiple records or as a Docker image with duplicate code. Similarly,

services that facilitate rendition or collecting are very rare but highly valued.

Security and accounting: Since serverless systems serve many users, they must partition

resource utilisation across customers and provide transparent billing so that everyone is on

the same page.

Monitoring and debugging: Basic debugging are supported on all platforms via the use

of print explanations that are saved in the execution logs [7]. Engineers may be provided

additional resources to aid in the identification of bottlenecks, the tracking of errors, and

the comprehension of capacity execution circumstances.

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

7914 http://www.webology.org

Figure 1: Example: Azure serverless platform

LITERATURE REVIEW

Joseph M. Hellerstein et al (2019), Using serverless computing, you can automate cloud

scalability and pay for what you need. In this investigation, we fix fundamental flaws in

traditional serverless computing that threaten its auto-scaling capability in light of today's

prevalent computing trends, which include, first and foremost, information-driven and

distributed computing, but also open source and bespoke hardware. Because of these

shortcomings, existing serverless contributions are a poor match for cloud progress and are

notably [1] unsuitable for the creation of information frameworks. Despite highlighting

some of the primary shortcomings of present serverless models, we raise a lot of challenges

we agree must be overcome to open the extreme potential that the cloud, with its Exabyte

of capacity and vast number of centres, could give to innovative designers.

Mubashra Sadaqat et al (2018), Serverless computing in the cloud frees up developers

from the mundane tasks of managing and operating servers, allowing them to spend their

attention where it belongs: on business logic. This new way of seeing the world has drawn

designers and associations alike in a way in which it not only lessens the cost of scaling

[2], provisioning, and infrastructure but, in some instances, eliminates the need for such

costs altogether. In order to determine whether or not the core components of serverless

computing have been characterised and, if so, to evaluate their benefits, hazards, and future

prospects, this study aims to do so in an effective way. In order to gain a better

understanding of the current state of serverless computing, authors began a multifaceted

writing survey. Though serverless computing presents certain challenges, it does enable

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

7915 http://www.webology.org

clients to operate with information streams in a flexible manner without interfacing with a

server.

Tarek Elgama et al (2019), Some applications, especially IoT applications, have shown

recent significant interest in serverless computing. Instead of deploying and managing

several virtual machines, users of serverless computing just need to focus on the one their

application needs. However, given the relative infancy of serverless platforms, they use a

novel pricing model that takes into account factors such as the size of available memory

(memory [3], duration of an arrangement/work process, and the number of executions) to

determine costs. In this analysis, we provide a new method of determining the price of

AWS Lambda serverless applications. At first, we sketch out the factors that affect the

price tag of serverless applications, such as "(1) combining a cluster of capacities, (2)

dividing capacities across edge and cloud resources, and (3) allocating memory to each

capacity. We next give an expert computation to examine several capacity combination

position arrangements, ultimately identifying the arrangement that maximises the

application's cost while keeping inactivity to a minimum. Based on our findings with image

preparation procedures, we can conclude that the calculation can find solutions that

increase costs by 35%-57% with just a 5%-15% increase in idle time. We further

demonstrate that our algorithm can unearth non-trivial memory architectures that lessen

both dormancy and cost.

METHODOLOGY

Figure 2, shows how the two processes of continuous model learning and workflow cost

prediction are separate and can be discerned in the chart. The current Serverless Functions

are monitored while in the continuous model learning process. When miniaturised scale

benchmarks are used, other functions, which have not yet been developed, can be

monitored. Once the monitoring data has been retrieved [8 – 10], It is kept in a database

for monitoring purposes (e.g., Prometheus, InfluxDB, or an oversaw monitoring

arrangement from the cloud supplier). Interspersed with breaks, the Model Trainer is

activated to have models to prepare for serverless functions that reflect their input and

output parameter allocations, which are fully discussed in the article.

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

7916 http://www.webology.org

Figure 2: Overall workflow of the proposed approach for the cost prediction of

serverless framework.

It is possible to utilise GPU-based speeding up during the model learning, which could be

communicated as a Spark or Hadoop job using GPUs. This works, because in the rare-

access scenario, Function Model Repository data can be stored in cloud storage. When a

workflow planner transfers a workflow he/she needs to assess, the workflow cost prediction

process is activated [11]. The Workflow Prediction Engine then retrieves all the model

instances from the Function Model Repository for all functions in the workflow. A

Workflow Model is developed from the blueprint provided by the Workflow Originator.

In order to calculate rough cost estimates, the Monte-Carlo Simulator plays out the

Workflow Model. The workflow designer may now once again use the cost inferters.

Workflow Predictive Engine prediction engine might execute as a serverless function,

since it is bound by uncommon and short-lived example and model derivation.

The method used in this examination gives exact predictions for serverless workflows that

are imperceptibly changing. We provide relevant data to the costs of the serverless

workflow, allowing arrangement designers to confidently decide which alternatives are

educated and whether to employ a serverless workflow or one with conventionally

supported workflow. To contextualise our cost predictions, workflow architects should

avoid spending time on research and experimentation with regard to their choices, as our

methodology indicates that an initial move towards entirely computerised workflow

optimization incorporates multi-target optimization strategies [12, 13]. At present,

numerous large innovation organisations, such as market-leading innovation organisations,

offer cloud-based registering administrations with various prices and determinations. As

the number of organisations using serverless implementations grows, the number of

options available for selecting them will also increase.

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

7917 http://www.webology.org

A wide range of different factors influences the price of each organization's service. There

are various aspects here, ranging from the company's sources of income to the way the

company goes about things (in view of the district or the time of day during which the

function execution happens). If a server receives a solicitation at 2 a.m. in the Winter and

it results in less vitality charges than if the identical solicitation is received at 12 p.m. in

the Summer, then we may infer that the solicitation was the major reason [14]. Also, the

supplier is subjected to a higher heap level when that occurs. It is also important to look at

what competitors are offering. To meet the various models of evaluating cloud computing,

alternative models have been proposed for cloud computing calculations that aren't well-

suited to serverless support. Battling to properly value specialised organisations is a

significant undertaking, and the investigation network should concentrate on this. Clients

are highly concerned with valuing because of its relation to them. As further researched,

the competent variety of the costs will result in a terrible entanglement between various

specialised groups. The client can go online to select different value alternatives that are

less costly. In this instance, clients will utilise numerous shared administration frameworks

(or split it all in a snap) and afterwards discover based on the accessible cost the item

utilises the most advantageous specialist service.

RESULT

The workflow designer uploads workflow models that may then be used to construct new

workflow models. The Monte-Carlo Simulator uses the Workflow Model Monte-Carlo

Simulator to forecast costs based on the Workflow Model. Workflow designers receive the

calculated costs back from the process designer. Using GPUs, the Workflow Prediction

Engine is serving a serverless function. We have gone into depth about how we utilise cost

models to forecast function response time and output parameter distributions [15] in order

to describe our method for producing cost estimates for serverless workflows. Using the

data available in the Monitoring Data Repository, we create separate models for how long

it takes for a serverless function to complete its task and how each output parameter varies.

This serverless method provides full access to all response time and parameterization data.

Machine learning approaches need numerical input, but not parameters to a function call.

Non-numeric values include texts, lists, binary data, and anything else that isn't a number.

At the point where automated feature extraction has already made significant progress, our

work does not concentrate on developing numeric features. Constant function execution

often shows the distribution of response times and output parameters.

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

7918 http://www.webology.org

Figure 3: In comparison to the normal distribution, billed response time appears to

be significantly greater than the mean response time.

We created and extensively tested a new feature called Text2Speech, which takes the text

given in Figure 3 and converts it into discourse in the same way as the picture does. In

order to watch an appropriation of the response time as a result of the wide variety of

exhibits and the equipment's immersiveness, we watch a function with a response time of

250 characters in a length of time between two exhibitions [16]. In addition, the following

audio recording's file size is being monitored. While this may be true, it is also true that the

size of the final document is directly related to the amount of time required to understand

the information. Whether or not other users would "steal" the response time of the service

is an important consideration when estimating the expenses of using a serverless function.

Every major FaaS service provider rounds the charged response time to the closest 100 ms,

so if you estimate the average response time too high, your cost estimates will be off. The

average response time for a simulated serverless function is shown to be 180 ms, with a

mean and standard deviation of 60 ms and 30 ms, respectively, in the preceding figure.

This function may take up to 200 ms if we assume that our mean response time of 180 ms

will be the only one we utilise and that it will be rounded to the closest 100 ms. However,

if we look at the actual chances of getting charged every millisecond, we find that the

average time to fully charge is 230.11 ms. The cost of serverless functions and workflows

may be more precisely estimated by calculating the variance in response time rather than

simply the mean.

CONCLUSION

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

7919 http://www.webology.org

This study aims to aid in cost estimation for serverless process executions via the use of a

concept offered below. This article provides a thorough overview of serverless computing,

including its benefits and the process of estimating associated costs. We examined two

commercial serverless service providers—Amazon Web Services (AWS) Lambda and

Microsoft Azure Functions—to assist address the specified study topics. The user is often

only paid for the time and resources actually spent using serverless services. The capacity

to scale down to zero instances is an important feature of serverless platforms.

REFERENCES

[1] Joseph M. Hellerstein, Jose Faleiro, Joseph E. Gonzalez, and Johann Schleier-

Smith, “Serverless Computing: One Step Forward, Two Steps Back” (2019).

[2] Mubashra Sadaqat, Ricardo Colomo-Palacios,”Serverless computing: a multivocal

literature review” (2018).

[3] Tarek Elgamal, Atul Sandur , Klara Nahrsted, “Costless: Optimizing Cost of

Serverless Computing through Function Fusion and Placement” (2019)

[4] M. Ghobaei-Arani, S. Jabbehdari, and M. A. Pourmina, "An autonomic approach

for resource provisioning of cloud services," Cluster Computing, pp. 1-20, 2016.

[5] R. Weingärtner, G. B. Bräscher, and C. B. Westphall, "Cloud resource

management: A survey on forecasting and profiling models," Journal of Network

and Computer Applications, vol. 47, pp. 99-106, 2015.

[6] Ghobaei-Arani, M. Shamsi, and A. A. Rahmanian, "An efficient approach for

improving virtual machine placement in cloud computing environment," Journal of

Experimental & Theoretical Artificial Intelligence, pp. 1-23, 2017.

[7] S. Singh and I. Chana, "Resource provisioning and scheduling in clouds: QoS

perspective," The Journal of Supercomputing, vol. 72, pp. 926-960, 2016.

[8] S. Islam, J. Keung, K. Lee, and A. Liu, "Empirical prediction models for adaptive

resource provisioning in the cloud," Future Generation Computer Systems, vol. 28,

pp. 155-162, 2012.

[9] J. Huang, C. Li, and J. Yu, "Resource prediction based on double exponential

smoothing in cloud computing," in Consumer Electronics, Communications and

Networks (CECNet), 2012 2nd International Conference on, 2012, pp. 2056-2060.

[10] Bankole and S. A. Ajila, "Cloud client prediction models for cloud resource

provisioning in a multitier web application environment," in Service Oriented

System Engineering (SOSE), 2013 IEEE 7th International Symposium on, 2013,

pp. 156-161.

[11] S. A. Ajila and A. A. Bankole, "Cloud client prediction models using

machine learning techniques," in Computer Software and Applications Conference

(COMPSAC), 2013 IEEE 37th Annual, 2013, pp. 134-142.

[12] N. R. Herbst, N. Huber, S. Kounev, and E. Amrehn, "Self‐adaptive

workload classification and forecasting for proactive resource provisioning,"

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

7920 http://www.webology.org

Concurrency and computation: practice and experience, vol. 26, pp. 2053-2078,

2014.

[13] H. R. Qavami, S. Jamali, M. K. Akbari, and B. Javadi, "Dynamic Resource

Provisioning in Cloud Computing: A Heuristic Markovian Approach," in Cloud

Computing, ed: Springer, 2014, pp. 102-111.

[14] G. García, I. B. Espert, and V. H. García, "SLA-driven dynamic cloud

resource management," Future Generation Computer Systems, vol. 31, pp. 1-11,

2014.

[15] S. Singh and I. Chana, "Q-aware: Quality of service based cloud resource

provisioning," Computers & Electrical Engineering, vol. 47, pp. 138-160, 2015.

[16] M. Fallah, M. G. Arani, and M. Maeen, "NASLA: Novel Auto Scaling

Approach based on Learning Automata for Web Application in Cloud Computing

Environment," International Journal of Computer Application, vol. 117, pp. 18-23,

2015.

